Ramanujan’s master theorem for sturm liouville operator

نویسندگان

چکیده

In this paper we prove an analogue of the Ramanujan’s master theorem in setting Sturm Liouville operator $$\begin{aligned} \mathcal L=\frac{d^2}{dt^2} + \frac{A'(t)}{A(t)} \frac{d}{dt}, \end{aligned}$$on \((0,\infty )\), where \(A(t)=(\sinh t)^{2\alpha +1}(\cosh t)^{2\beta +1}B(t); \alpha ,\beta > -\frac{1}{2}\) with suitable conditions on B. When \(B\equiv 1\) get back Master for Jacobi operator.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generalization of Sturm-Liouville Theory for Fractional Bessel Operator

In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...

متن کامل

Sturm-liouville Operator with General Boundary Conditions

We classify the general linear boundary conditions involving u′′, u′ and u on the boundary {a, b} so that a Sturm-Liouville operator on [a, b] has a unique self-adjoint extension on a suitable Hilbert space.

متن کامل

An Expansion Theorem for a Sturm–Liouville Operator on Semi-Unbounded Time Scales

In this study, we establish a Parseval equality and an expansion formula for a Sturm– Liouville operator on semi-unbounded time scales. AMS subject classification: 34L10.

متن کامل

On‎ ‎inverse problem for singular Sturm-Liouville operator with‎ ‎discontinuity conditions

‎In this study‎, ‎properties of spectral characteristic are investigated for‎ ‎singular Sturm-Liouville operators in the case where an eigen‎ ‎parameter not only appears in the differential equation but is‎ ‎also linearly contained in the jump conditions‎. ‎Also Weyl function‎ ‎for considering operator has been defined and the theorems which‎ ‎related to uniqueness of solution of inverse proble...

متن کامل

Spectral analysis of a self-similar Sturm-Liouville operator

In this text we describe the spectral nature (pure point or continuous) of a self-similar Sturm-Liouville operator on the line or the half-line. This is motivated by the more general problem of understanding the spectrum of Laplace operators on unbounded finitely ramified self-similar sets. In this context, this furnishes the first example of a description of the spectral nature of the operator...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monatshefte für Mathematik

سال: 2022

ISSN: ['0026-9255', '1436-5081']

DOI: https://doi.org/10.1007/s00605-022-01769-z